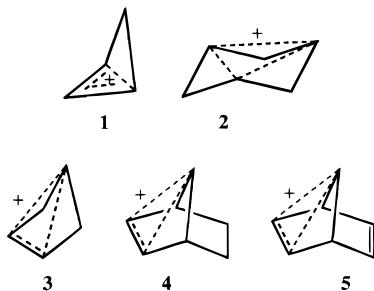


Homoconjugation in the Adamantane Cage: DFT/IGLO Studies of the 1,3-Dehydro-5-adamantyl Cation, Its Isoelectronic Boron Analogue 1,3-Dehydro-5-Boraadamantane, and Related Systems^{1,†}

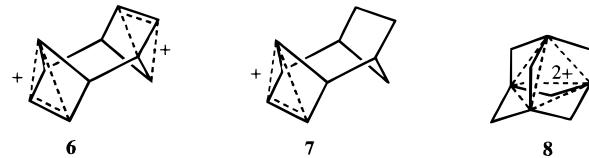
George A. Olah,* Golam Rasul, and G. K. Surya Prakash

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661


olah@methyl.usc.edu

Received May 5, 2000

The structure of 1,3-dehydro-5-adamantyl cation and its isoelectronic boron analogue 1,3-dehydro-5-boraadamantane as well as some related adamantane systems, hitherto unknown as persistent long-lived species, were investigated by using the density functional theory (DFT) method. ¹³C and ¹¹B NMR chemical shifts of the compounds were also calculated using the IGLO method. Stabilization of the systems due to homoconjugation is discussed.


Introduction

The homoaromaticity² concept was first introduced by Winstein in the late 1950s,³ and homoaromatic overlap was studied first in 6π -Hückeloid systems such as the homotropylium cation. The parent monohomoaromatic homocyclopropenium ion⁴ **1** and trishomoaromatic trishomocyclopropenium ion^{5,6} **2** were successfully prepared and studied as long-lived ions under superacidic conditions. Although the parent bishomoaromatic 4-cyclopentenyl cation **3** has not been observed,^{5b} the bishomoaromatic nature of its ethano- and etheno-bridged analogues 7-norbornenyl **4** and 7-norbornadienyl **5** cations was extensively studied^{6,7} by NMR and ab initio/IGLO methods.⁸ Isoelectronic boron analogues of **4** and **5**, 7-boranorbornene and 7-boranorbornadiene, respectively, were also investigated by the ab initio/IGLO method.⁹

Furthermore, the bishomoaromatic nature of *anti*-tricyclo[4.2.1.1^{2,5}]deca-3,7-diene-9,10-diyli dication **6** and *anti*-tricyclo[4.2.1.1^{2,5}]deca-3-ene-9-yl cation **7** and the

trishomoaromatic nature of trishomocyclopropenium ion **2** were also extensively investigated by the ab initio/IGLO theory.¹⁰

Schleyer et al. have prepared^{11a} and characterized the intriguing 1,3-dehydro-5,7-adamantanediyli dication **8** under long-lived stable ion conditions. The dication **8** is an example of a three-dimensional aromatic system in which the p orbitals of the four bridgehead carbons overlap inward in the cage in a tetrahedral fashion involving two electrons. Schleyer et al. have also calculated^{11a} the structures and ¹³C NMR chemical shift values of the dication **8** ab initio/IGLO methods and the computed results agree very well with the experimental data. The dication **8** can also be considered as a three-dimensional aromatic compound. In neutral hydrocarbon systems, however, the magnitude of homoaromatic overlap decreases with increasing interruption of methylene groups of the otherwise conjugated π -framework.

We now report density functional theory (DFT)/IGLO studies of the 1,3-dehydro-5-adamantyl cation and its isoelectronic boron analogue 1,3-dehydro-5-boraadamantane as well as some related ions, hitherto not yet observed as persistent long-lived species. Since this

[†] Dedicated to P. v. R. Schleyer on the occasion of his 70th birthday.
(1) Stable Carbocations. 311. For Part 310, see: Olah, G. A.; Reddy, V. P.; Rasul, G.; Prakash, G. K. S. *J. Am. Chem. Soc.* **1999**, *121*, 9994.

(2) Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Field, L. D.; Wade, K.; *Hypercarbon Chemistry*; Wiley-Interscience: New York, 1985.

(3) Winstein, S. *J. Am. Chem. Soc.* **1959**, *81*, 6524.

(4) Olah, G. A.; Staral, J. S.; Liang, G.; *J. Am. Chem. Soc.* **1974**, *96*, 6233. Olah, G. A.; Staral, J. S.; Spear, R. J.; Liang, G. *J. Am. Chem. Soc.* **1975**, *97*, 5489.

(5) (a) Masamune, S.; Sakai, M.; Jones, A. V. K.; Nakashima, T. *Can. J. Chem.* **1974**, *52*, 855. (b) Olah, G. A.; Prakash, G. K. S.; Rawdah, T. N.; Whittaker, D.; Rees, J. C. *J. Am. Chem. Soc.* **1979**, *101*, 3935.

(6) Olah, G. A.; Liang, G. *J. Am. Chem. Soc.* **1975**, *97*, 6803 and references therein.

(7) Lustgarten, R. K.; Brookhart, M.; Winstein, S. *J. Am. Chem. Soc.* **1967**, *89*, 6350. Lustgarten, R. K.; Brookhart, M.; Winstein, S. *J. Am. Chem. Soc.* **1967**, *89*, 6352. Lustgarten, R. K.; Brookhart, M.; Winstein, S. *J. Am. Chem. Soc.* **1972**, *94*, 2347.

(8) Bremer, M.; Schötz, K.; Schleyer, P. v. R.; Fleisher, U.; Schindler, M.; Kutzelnigg, W.; Koch, W.; Pulay, P. *Angew. Chem., Int. Ed. Engl.* **1989**, *28*, 1042.

(9) Schulman, J. M.; Disch, R. L.; Schleyer, P. v. R.; Bühl, M.; Bremer, M.; Koch, W. *J. Am. Chem. Soc.* **1992**, *114*, 7897.

(10) Prakash, G. K. S.; Rasul, G.; Yudin, A. K.; Olah, G. A. *Gazz. Chim. Ital.* **1996**, *126*, 1.

(11) (a) Bremer, M.; Schleyer, P. v. R.; Schötz, K.; Kuasch, M.; Schindler, M. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 761. (b) Fokin, A. A.; Kiran, B.; Bremer, M.; Yang, X.; Jiao, H.; Schleyer, P. v. R.; Schreiner, P. R. *Chem. Eur. J.* **2000**, *6*, 1615.

Table 1. Total Energies (−au) and ZPE^a

no.	B3LYP/6-31G*//B3LYP/6-31G*	ZPE (kcal/mol)
2	233.72778	83.3
9	388.58332	127.7
10	375.59294	124.9
11	220.75331	80.1
12	374.74020	118.3
13	361.75816	115.6
14	375.54280	122.5
15	362.36700	118.8

^a Zero point vibrational energies (ZPE) at B3LYP/6-31G*//B3LYP/6-31G* scaled by a factor of 0.98.

manuscript was written, Schleyer et al. have reported^{11b} the structures of **12** and **13** calculated at the B3LYP/6-31G* level focusing on four-center three-dimensional aromaticity.

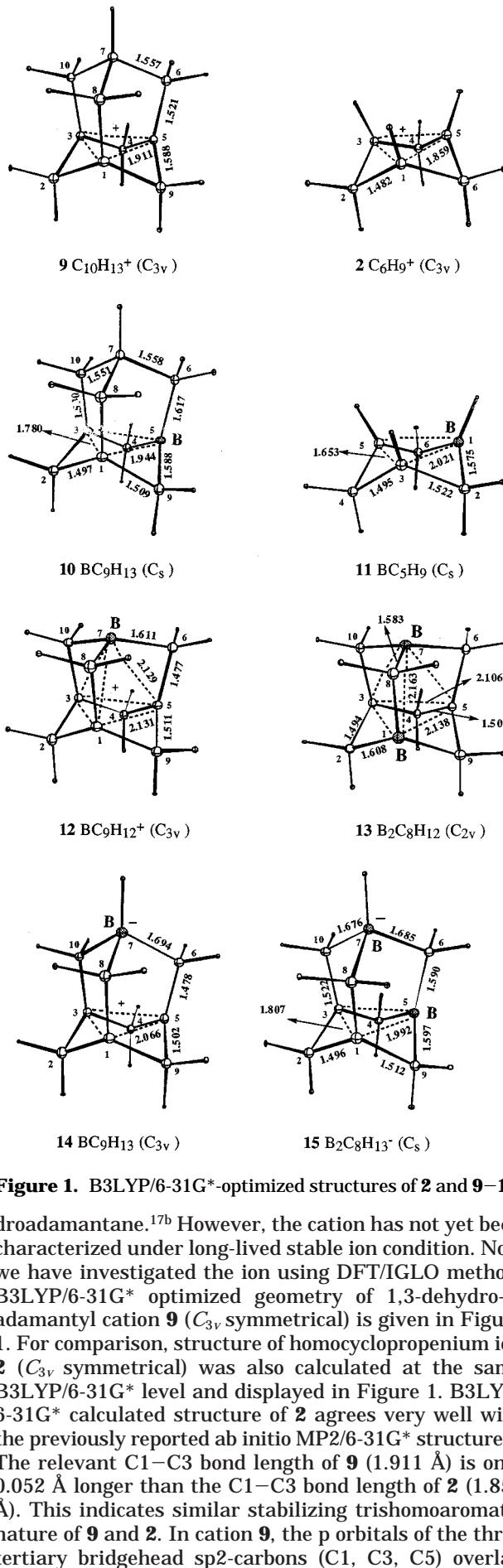
Calculations

Calculations were carried out with the Gaussian 98 program system.¹² The geometry optimizations were performed using the DFT¹³ method at the B3LYP¹⁴/6-31G* level.^{15a} Vibrational frequencies at the B3LYP/6-31G*//B3LYP/6-31G* level were used to characterize stationary points as minima (number of imaginary frequency (NIMAG) = 0) and to evaluate zero point vibrational energies (ZPE) which were scaled by a factor of 0.98.^{15b} Final energies were calculated at the B3LYP/6-31G*//B3LYP/6-31G* + ZPE level. Calculated energies are given in Table 1. B3LYP/6-31G* geometrical parameters and final energies will be discussed throughout, unless stated otherwise. ¹³C and ¹¹B NMR calculations were performed according to the reported method using IGLO programs¹⁶ at the IGLO DZ levels using B3LYP/6-31G* geometries. Huzinaga^{17a} Gaussian lobes were used as follows: Basis DZ: C, B: 7s 3p contracted to [4111,21], H, 3s contracted to [21]. The ¹³C NMR chemical shifts were referenced to TMS. The ¹¹B NMR chemical shifts were first computed using B₂H₆ as reference. The ¹¹B NMR chemical shifts were finally referenced to BF₃/OEt₂ (δ (B₂H₆) 16.6 vs BF₃/OEt₂).

Results and Discussion

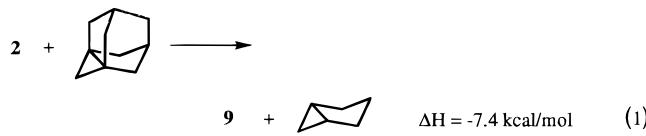
Intermediacy of 1,3-dehydro-5-adamantyl cation was invoked in the solvolysis studies of 5-bromo-1,3-dehy-

(12) Gaussian 98 (Revision A.5): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1998.

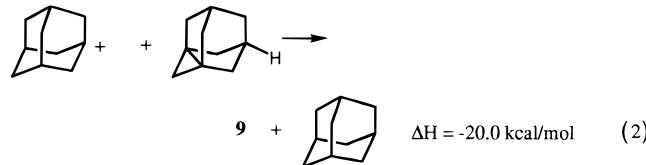

(13) Ziegler, T. *Chem. Rev.* **1991**, *91*, 651.

(14) Becke's three parameter hybrid method using the LYP correlation functional: Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648. Lee, C.; Yang, W.; Parr, R. G.; *Phys. Rev. B.*, **1988**, *37*, 785. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. *J. Phys. Chem.* **1994**, *98*, 11623.

(15) (a) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley-Interscience: New York, 1986. (b) Foresman, J. B.; Frisch, A. *Exploring Chemistry with Electronic Structure Methods*; Gaussian Inc.: Pittsburgh, 1996.


(16) Kutzelnigg, W.; Fleischer, U.; Schindler, M. *NMR* **1991**, *91*, 651. Kutzelnigg, W. *Isr. J. Chem.* **1980**, *27*, 789. Fleischer, U.; Schindler, M.; Kutzelnigg, W. *J. Chem. Phys.* **1987**, *86*, 6337. Schindler, M. *J. Am. Chem. Soc.* **1987**, *109*, 5950.

(17) (a) Huzinaga, S. *Approximate Atomic Wave Function*; University of Alberta: Edmonton, Alberta, Canada, 1971. (b) Scott, W. B.; Pincock, R. E. *J. Am. Chem. Soc.* **1973**, *95*, 2040.



involving 2 electrons whereas in cation **2** the p orbitals of the three secondary sp²-carbons (C1, C3, C5) overlap also involving 2 electrons. The C1–C8 and C8–C7 bond lengths of **9** are 1.521 and 1.557 Å. These are only 0.023 Å shorter and 0.013 Å longer than the C–C bond length of adamantanone (1.544 Å) calculated at the same B3LYP/6-31G* level. This shows that the positive charge of the ion **9** is extensively delocalized among three C1, C3 and C5 sp² type carbons and thus involving little additional C–C (e.g. C8–C7) hyperconjugation.

The stabilization energies of the ions **2** and **9** due to trishomoaromatic interaction were compared by the isodesmic eq 1. The reaction is exothermic by 7.4 kcal/mol indicating more stabilization of **9** compared to **2** probably due to large skeletal size.

To further investigate the relative stabilities of **9** we also considered isodesmic eq 2 where reaction of 1-adamantyl cation and 1,3-dehydro-adamantane leads to **9** and adamantanone. The reaction is exothermic by 20.0 kcal/mol indicating significant stabilization of **9** due to trishomoaromatic interaction.

¹³C NMR chemical shifts of **2** and **9** were calculated by the IGLO method. The calculated ¹³C NMR chemical shifts of C1 and C2 of **2** were found to be $\delta^{13}\text{C}$ 4.7 and 16.1, respectively, closely matching the experimentally observed^{5a} values of 4.7 and 17.3. The calculated ¹³C NMR chemical shifts of the relevant C1 and C2 of **9** are $\delta^{13}\text{C}$ 43.8 and 37.9, respectively. The $\delta^{13}\text{C}$ 43.8 of carbocationic centers is significantly more deshielded than that of the corresponding carbocationic centers of **2** ($\delta^{13}\text{C}$ 4.7). Also the $\delta^{13}\text{C}$ 70.4 of tertiary C7 carbon is unusually deshielded compared to that of tertiary carbon of neutral adamantanone ($\delta^{13}\text{C}$ 15.4) computed at the same level.

Isoelectronic boron analogues of **9** and **2**, structures **10** and **11**, respectively, were also calculated (Figure 1). The calculated structures also show the stabilizing trishomoaromatic natures in both **10** and **11**. The C1–C3 and C1–B5 bond lengths of **10** are 1.780 and 1.944 Å, respectively, also close to the related C3–C5 and C3–B1 bond lengths of **11** (1.653 and 2.021 Å). In cation **10** the p orbitals of the two bridgehead sp²-carbons (C1, C3) and the bridgehead sp²-boron (B5) overlap involving 2 electrons. The calculated $\delta^{13}\text{C}$ value of the bridgehead sp²-carbon C1 of **10** is 19.5. On the other hand, related C3 carbon of **11** is very shielded at $\delta^{13}\text{C}$ –10.5. The calculated $\delta^{11}\text{B}$ value of **10** and **11** are –19.6 and –4.4, respectively.

We have also calculated the structure of ion **12** (Figure 1) which can be derived by replacing the CH group (at position C7) of monocation **9** by a boron atom. The monocation **12** is in fact a isoelectronic boron analogue

Table 2. IGLO Calculated ¹³C^a and ¹¹B^b

no.	atom	NMR chemical shifts
2	C1, C3, C5	4.7
	C2, C4, C6	16.1
9	C1, C3, C5	43.8
	C2, C4, C9	37.9
10	C6, C8, C10	34.6
	C7	70.4
10	C1, C3	19.5
	C2	35.1
10	C4, C9	21.6
	C6	20.5
10	C7	50.9
	C8, C10	37.9
11	B5	–19.8
	C3, C5	–10.5
11	C4	14.2
	C2, C6	8.7
12	B1	–4.4
	C1, C3, C5	13.7
12	C2, C4, C9	35.8
	C6, C8, C10	17.9
13	B7	–65.7
	C3, C5	0.7
13	C4	36.8
	C2, C6	20.1
13	C8	–0.2
	B1	–49.2
14	C1, C3, C5	76.1
	C2, C4, C9	45.2
14	C6, C8, C10	29.4
	B7	6.7
15	C1, C3	23.1
	C2	37.8
15	C4, C9	25.3
	C6	12.0
15	C8, C10	31.2
	B5	–12.7
15	B7	–7.9

^a ¹³C shifts are referenced to TMS. ^b ¹¹B shifts are referenced to $\text{BF}_3\text{:OEt}_2$.

of three-dimensional aromatic 1,3-dehydro-5,7-adamantanediyl dication **8**.⁸ The calculated structure of **12** also indicate the existence of three-dimensional aromaticity in which the p orbital of the three carbons (C1, C3, C5) and the p orbital of boron (B7) overlap in a pseudo tetrahedral fashion involving 2 electrons. Thus, the C1–C3 and C1–B7 bond distances of 2.131 and 2.129 Å, respectively, are very close to the related C1–C3 bond distance (2.104 Å) in 1,3-dehydro-5,7-adamantanediyl dication **8** calculated at the same B3LYP/6-31G* level.¹⁸ The calculated $\delta^{13}\text{C}$ values of the bridgehead carbon C1 of **12** is 13.7 which is close to that of the experimental value of 6.6 found in **8**.⁸ The calculated $\delta^{11}\text{B}$ of **12** was computed to be highly shielded at –65.7.

For comparison, calculated structure **13**, which can be derived by replacing the C1 carbon of monocation **12** by a boron atom, is also given in Figure 1. Structure **13**, neutral compound with two bridgehead boron atoms, is also an isoelectronic analogue of dication **8**. Structure **13** has been reported previously.¹⁸ Structure **13** also indicate the existence of three-dimensional aromaticity in which the p orbital of the two carbons (C3, C5) and the p orbital of two borons (B1, B7) overlap involving 2 electrons. The C3–C5 and B1–C3 bond distances of **13** are 2.106 and 2.138 Å, respectively, also close to the related C1–C3 bond distance (2.104 Å) of **8**.¹⁸ The calculated NMR

(18) Prakash, G. K. S.; Rasul, G.; Yudin, A. K.; Williams, R. E. *Borane, Carborane, Carbocation Continuum*; Wiley-Interscience: New York, 1998; p 147.

chemical shifts of the bridgehead carbon is $\delta^{13}\text{C}$ 0.7 and the bridgehead boron is $\delta^{11}\text{B}$ -49.2 .

Although the concept of homoaromaticity was successfully demonstrated in long-lived carbocations, in neutral molecules and carbanions the concept has not been sufficiently established.¹⁹ We have now calculationally probed the Zwitterionic potentially trishomoaromatic compound **14** and its isoelectronic analogue, the negatively charged trishomoaromatic anion **15**. The species **14** is composed of a positively charged trishomoaromatic unit and a negatively charged borate making it overall a neutral compound. On the other hand, **15** is composed of a neutral trishomoaromatic unit (containing a boron atom) and a negatively charged borate making it overall an anion. The calculated structures indicate the presence of trishomoaromatic units in both **14** and **15**. The $\delta^{13}\text{C}$ and $\delta^{11}\text{B}$ values of **14** and **15** were also computed using IGLO method and shown in Table 2.

The calculated $\delta^{13}\text{C}$ of trishomoaromatic carbons (C1,

C3, and C5) in **14** at 76.1 ppm is substantially more deshielded than those computed in the case of **9** as well as **12**. However, the calculated bond lengths are comparable (± 0.1 Å). Similar deshieldings are observed in the case of **15** when compared with structure **10**.

Conclusions

DFT calculations at the B3LYP/6-31G* level were carried out to investigate the structures of some of the homoaromatic systems in the adamantane cage, hitherto not yet observed as persistent long-lived species. These are 1,3-dehydro-5-adamantyl cation **9**, isoelectronic boron analogue 1,3-dehydro-5-boraadamantane **10** and related systems **12–15**. Stability of the systems due to homoconjugative interactions is discussed. ^{13}C and ^{11}B NMR chemical shifts of the compounds were also calculated using IGLO method.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

JO000695M

(19) Paquette, L. A. *Angew. Chem., Int. Ed. Engl.* **1978**, *17*, 106.